
Instant and Incremental Transformation of Models

 Sven Johann Alexander Egyed
 University of Applied Sciences Mannheim Teknowledge Corporation
 Windeckstrasse 110 4640 Admiralty Way, Suite 1010
 68163 Mannheim, Germany Marina Del Rey, CA 90292, USA
 sven_johann@gmx.net aegyed@ieee.org

Abstract

This paper introduces a framework for the instant
and incremental transformation of changes among
models. It can be configured to understand where and
when changes happen in a given source model and the
impact these changes have onto a given target model.
It can also be configured to select translation rules as
needed to update the target model. Incremental
transformation is an alternative to the batch
transformation and is significantly more efficient in
maintaining the synchronicity among large-scale
models.

1. Introduction

Transformation moves (translates) data among
separately captured and maintained sources. Its role is
to carry data from one source to another one and to
overcome syntactic and semantic differences in how
this data is represented in different sources.

Software modeling is a classical domain that
captures and maintains data separately. Little data
integration exists in the modeling domain. Even design
methodologies, such as the UML [5], capture and
maintain diagrammatic data (i.e., class, sequence,
collaboration, use-case diagrams) separately. To date,
batch transformation is the predominant way of sharing
data across models. For example, tools share data
through import/export functions. This works well if the
data sharing is infrequent or the data quantity is small.
Unfortunately, iterative software development (i.e.,
spiral model [1]) encourages changes to be frequent
and industrial models tend to be large. This implies that
relatively minor but frequent model changes are
computationally very expensive to transform. Here,
batch transformation is impractical for maintaining data
synchronicity.

This paper discusses a framework for incremental
transformation. Incremental transformation understands
changes and their effects. It focuses only on those parts
of data that are affected by changes, thus ignoring data
during transformation that does not change [2]. This
makes transformation computationally more efficient
and less time consuming.

Our framework is the result of three
implementations on four types of models. While all
implementations used different transformation rules,
they had in common an infrastructure that we believe to
be generally applicable for incremental transformation.
The infrastructure with its implementations was built
for several industrial partners who validated its
scalability and usability on industrial models with up to
43,000 model elements. We found that the cost of
incremental transformation is small in comparison to
batch transformation.

Incremental transformation is challenging because it
is hard to understand the effect of changes if models
differ syntactically and semantically. Our approach
uses scopes, notification mechanisms, queuing, and
filtering to handle this problem.

2. UML / ESCM Case Study

We will illustrate our approach on the UML to

ESCM case study. ESCM [4] is a special-purpose
modeling language for the embedded systems domain.
It defines over 20 types of model elements such as
components, receptacles, and events. For brevity, we
will use a small subset of the ESCM only.

We implemented a batch and an incremental
transformation technique to support the UML to ESCM
transformation. Both implementations were evaluated
on a range of industrial, embedded systems models to
evaluate effectiveness, optimality, and scalability.

Published in the Proceedings of the 19th IEEE International Conference on Automated Software
Engineering (ASE), Linz, Austria, September 2004, pp. forthcoming.

3. Should Exist and Does Exist

Batch transformation discards transformation results

while incremental transformation updates them. Thus,
the key difference between batch transformation and
incremental transformation is in remembering previous
transformation results.

Incremental transformation observes changes to the
source. It then translates those parts of the source that
change the target. It creates elements in the target if
such elements do not exist, it modifies elements if such
elements exist but have changed, and it deletes
elements.

[]

[]
[]delete()()

modify()()
create()

)doesExist(tshouldExisifelse
)doesExist(tshouldExisifelse

)doesExist(t()shouldExisif

∧¬
∧

¬∧

Figure 1. ShouldExist/DoesExist Algorithm

In principle, incremental transformation is about
understanding what target elements should exist and do
exist (Figure 1). If incremental transformation
determines that a target element should exist but it
currently does not exist then it creates the element.
Otherwise, if the target element should exist and it does
exist then incremental transformation modifies it.
Finally, if the target element does exist but it should not
exist then incremental transformation deletes it.

Incremental transformation must understand when
changes happen and where changes happen.
Understanding this requires the instrumentation of the
source. In [3] we discussed how to instrument several
commercial-off-the-shelf design tools (such as IBM
Rational Rose and Matlab/Stateflow) to expose
changes to their internal design models. Interested
“observers”, such as our incremental transformation,
are then notified about changes instantly. We
implemented the UML to ESCM transformation on top
of IBM Rational Rose. For example, creating a UML
class in Rose results in the following time-stamped
UML change notifications:

New model element: 101 UML.Class
Modified model element: 100 UML.Model [ownedElements]

The first message notifies of the creation of a model

element of type Class with ID 101. The second
message tells about a change to the ownedElements
field of an existing model element (Model) with ID
100. The second message is a side effect of the creation
of the class in that a pre-determined model now owns
the class (model’s ownedElements field).

Change messages communicate when (timestamp)
and where (unique ids of model elements and their

field names) changes happen in the UML. The
shouldExist function then computes the number and
types of elements that should exist in the target based
on the changes to the source.

Implementing shouldExist efficiently for any target
model is not trivial. Only certain types of source
changes cause certain types of target changes (see
Figure 2). For example, only changes to UML classes
and their stereotypes cause the creation of ESCM
components.

ESCM.Component

ESCM.Attribute

ESCM.Receptacle

UML.Class
UML.Stereotype

UML.Attribute

UML.Association
UML.AssociationEnd

Figure 2. UML Changes relating to ESCM Changes

Thus, the two UML change notifications above
affect at most ESCM components and ESCM
receptacles but no other elements. Therefore, the
change to the UML class triggers a call to shouldExist
for ESCM components and it triggers another call to
shouldExist for ESCM receptacles. This solution has
several benefits: (1) it divides shouldExist into smaller,
independent evaluation functions (instead of a single,
comprehensive one) and (2) it allows for the possibility
that single source elements cause the creation of
multiple target elements.

For ESCM components, shouldExist returns true if
the UML change is about an UML class with the
stereotype “abstract component” or “concrete
component” (a stereotype is a textual field owned by a
class). The function has to consider that a change
originates from either a stereotype or a class.

Component.shouldExist(change)
if (change.object is-a UML.Stereotype) then
 base = owner(change.object)
else if (change.object is-a UML.Class) then
 base = change.object
return (base is-a UML.Class and
 (stereotype(base) = “Abstract Component”) or
 (stereotype(base) = “Concrete Component”)

The implementation of doesExist is simple if the

target elements have predictable, unique identifiers.
The function doesExist returns true if a target element
exists with a given id.

It is straightforward to compute a predictable id for
target elements if they are based on unique source
elements (called base elements). For example, the base
element for every ESCM component is the UML class
with the matching stereotype. The same UML class is
never a base element for any other ESCM component.
The function above thus looks for the base element first

(i.e., in case the changed element is a stereotype then
the base element is the class that owns it). We then use
the unique ID of the source element to compute the ID
of the target element.

new model element: 102 UML.Stereotype
modified model element: 101 UML.Class [stereotype]

To create an ESCM component, we need to add a

valid stereotype to the class 101 (see above change
notifications). Now, shouldExist returns true while
doesExist returns false (no ESCM element 101 exists).
The create function instantiates an ESCM component
(see Figure 3; left=UML; right=ESCM).

Component

CompA
CompA

<<abstract component>>

101

102

Figure 3. Creation of an ESCM Component

The modify and delete functions change an existing
target element. The target element is found through the
predicted unique ID. For example, modifying the name
of the previously created class (101) causes the
following UML change notification:

modified model element: 101 UML.Class [name]

From the UML to ESCM mapping in Figure 2 we

know that this change affects either an ESCM
component or an ESCM receptacle. No ESCM
component needs to be created because shouldExist is
still true and doesExist is true also. The
ShouldExist/DoesExist algorithm in Figure 1 thus
modifies the existing ESCM component. This
modification includes the update of its field values.

4. Creation Scope and Update Scope

Figure 2 defined a generic mapping table that

related types of source elements to types of target
elements they create. For example, a change to any
UML class or stereotype triggers a
shouldExist/doesExist evaluation for ESCM
components. We have no knowledge a-priori what
instances of source elements trigger the creation of
target elements.

Once a target element exists, its modification and
deletion is dependent on the specific source elements
that caused its creation.1 For example, the existence of

1 We use the term instances and elements synonymously.
Certain instances are related in their type (e.g., two instances
of the type UML class)

CompA is dependent solely on the class instance 101
and the stereotype instance 102.

Incremental transformation maintains the scope for
create separately from the scope for modify and delete.
The creation scope refers to types of source elements
that trigger the creation of types of target elements, if
changed. The update scope refers to instances of
source elements that trigger the modification and
deletion of instances of target elements, if changed.

Separating the creation scope from the update scope
not only separates types from instances but it also
separates scope boundaries. Typically, the update
scope contains more source elements than the creation
scope because the existence of a target element is
typically computable with a subset of the knowledge.

Component
CompA

CompB
<<abstract component>>

CompA
<<abstract component>>

Component
CompB

child

parent
is-a

103

101

105

102

104

Figure 4. Creation of an ESCM Receptacle

For example, if we create a second UML class with

the name CompB and the “abstract component”
stereotype then a second ESCM component is created
(see Figure 4; left=UML; right=ESCM). Adding an
inheritance relationship between the two classes does
not affect the creation of any ESCM element but it does
modify both existing ones. That is, component CompA
becomes a child of component CompB.

Therefore, the creation scope for ESCM
components is UML classes and UML stereotypes (as
depicted in Figure 2). UML Generalizations
(inheritance relationships) are not part of this creation
scope. However, the update scope for UML
components is the specific classes, stereotypes, and
generalizations that define its creation and its fields.
For example, the update scope of component CompA is
UML class CompA (101), UML stereotype 102, and
UML generalization is-a (105) but not the class CompB
(103). The update scope is defined during translation.

Some source elements are part of the update scope
of multiple target elements. For example, the UML
generalization is-a (105) is part of the update scope for
both components CompA and CompB. A change in the
generalization affects the children field of CompB and
it affects the parent field of CompA.

5. Infrastructure

Figure 5 depicts the basic infrastructure for

incremental transformation with scopes. UML change
notifications trigger calls to the notify function. The
notify function first calls creationNotify for every
affected target type (e.g., a change to an UML class
may create an ESCM component). The function then
calls updateNotify for every affected target instance
(e.g., a change to the class 103 may change the ESCM
component CompB).

The creationNotify function computes shouldExist
and doesExist. To optimize the approach, the
shouldExist function returns the predicted unique ID of
the base element that should exist. The doesExist
function takes the predicted ID and returns the actual
target instance; or it returns null if it does not exist. The
create function is called in accordance to the
ShouldExist/DoesExist algorithm discussed earlier. It
first creates an instance of the required type and
predicted ID. It then calls translate to set the field
values (e.g., name, parent, children).

The updateNotify function calls modify if
shouldExist returns an ID (this is equivalent to
returning true). Otherwise, the delete function is called.
Both functions are called in accordance to the
ShouldExist/DoesExist algorithm because the target
elements do exist if there is a defined update scope
(i.e., update scope is added in create and removed in
delete). The modify function removes and adds the
update scope because a change to some target elements
also affects their scope.

The role of translate is two-fold: First, it investigates
source elements to compute field values (properties)
for individual target elements. Second, it computes the
update scope for these target elements. Thus, one
translate function is needed per target element type.

6. CONCLUSIONS

This paper presented an overview of a framework
for the incremental transformation of models. The
framework supported the transformation of changes
from a source model to a target model. The goal of the

framework was to minimize unnecessary
transformation by only transforming data that changed.
The presented framework is a simplification of the
actual framework in that we omitted details. For
example, it was not discussed how semantic changes
are treated. Those are simple changes in the source
model that cause a variety of ripple effects among
multiple/many target elements. Indeed, our extended
framework supports this ripple effect which will be
presented in a follow-on paper.

The framework was implemented three times and it
was validated on several, large-scale industrial models
with up to 43,000 model elements. The large-scale
nature of the validation models was necessary because
they are the main motivation for incremental
transformation (i.e., batch transformation would suffice
for small-scale models). The validation determined that
incremental transformation comes with a slight
performance penalty initially (during initial
transformation) but is computationally very effective
thereafter (with every change).

7. REFERENCES

[1] Boehm B., Egyed A., Kwan J., and Madachy R.:

Using the WinWin Spiral Model: A Case Study.
IEEE Computer, 1998, 33-44.

[2] Bohner, S.A., Arnold, R. S.: Software Change
Impact Analysis. IEEE Computer Society Press,
1991.

[3] Egyed, A. and Balzer, R. "Unfriendly COTS
Integration - Instrumentation and Interfaces for
Improved Plugability," Proceedings of the 16th
IEEE Intern. Conference on Automated Software
Engineering, San Diego, USA, Nov. 2001.

[4] Roll, W.: "Towards Model-Based and CCM-Based
Applications for Real-Time Systems ," Proceedings
of the 6th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing,
Hakodate, Hokkaido, Japan , May 2003, pp.75-82.

[5] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified
Modeling Language Reference Manual. Addison
Wesley, 1999.

delete(instance)
instance.dispose()
removeUpdateScope()

changed
source
queue

creationNotify(source-change, type)
ID = shouldExist(source-change)
if (ID is-not null and not doesExist(ID))
 create(ID, type, source-change)notify(source-change)

for all types in creation-scope(source-change)
 creationNotify(source-change, type)
for all instances in update-scope(source-change)
 updateNotify(source-change, instance)

updateNotify(source-change, instance)
ID = shouldExist(source-change)
if (ID is-not null)
 modify(instance,source-change)
else
 delete(instance)

modify(instance,source-change)
removeUpdateScope()
instance.translate(source-change)
addUpdateScope()

create(ID, type, source-change)
instance = new <type>(ID)
instance.translate(source-change)
addUpdateScope()

Figure 5. Basic Incremental Transformation

